ABSTRACT

Deposit franchise allows banks to pay deposit rates that are low and insensitive to market interest rates. However, maintaining this franchise requires high fixed costs. In order to hedge against interest rate risk arising from these fixed costs, banks with strong deposit franchises seek to reduce sensitivity of their interest income to market rates by holding longer-term fixed-rate assets. We provide evidence for this theory from India, and show that this behaviour can help partially rationalise India’s infrastructure credit boom of the 2000s. During this period, banks with stronger deposit franchise switched from long-term government securities to long-term fixed rate loans, particularly in the infrastructure sector. We highlight that rising bond yields and associated mark to market losses on bond holdings may have exacerbated the switch towards risky infrastructure sector, eventually resulting in high non-performing loans. Overall, while maturity transformation allows banks to shield their net interest margins from interest rate risk, we propose that market incompleteness in developing economies may lead to a tradeoff between stabilising net interest margin and default risk.

JEL Codes: G01, G21, G28, H1
Keywords: Deposit franchise, infrastructure lending, state-owned banking, interest rate risk, default risk, credit boom, emerging economy.
1. Introduction

In one of the most notable developments of the Indian economy in recent history, share of bank credit to the infrastructure sector doubled within a span of four years from 2004 to 2008\(^1\). In the aftermath of this credit boom, a significant fraction of infrastructure loans on bank balance sheets turned bad, resulting in a stark increase in the ratio of non-performing loans to total assets\(^2\). Contrary to common perception, there exists substantial cross sectional heterogeneity in the extent of infrastructure lending undertaken by banks during this period. In this paper, we attempt to utilise this heterogeneity to offer a distinct explanation of the bank lending behaviour during this period based on deposit franchise of Indian banks and fixed costs associated with maintaining this franchise.

Deposit franchise can give banks market power over retail deposits, allowing them to borrow at rates which are low and insensitive to the monetary policy rate (Drechsler et al., 2021). However, running a deposit franchise requires fixed operating expenses on branches (e.g. salaries). Thus, while deposits may be short term, deposit franchise makes banks' funding resemble long-term fixed rate debt. The associated interest rate risk incentivises banks to hedge by holding long-term fixed rate assets. With this intuition in mind, we explore the relevance of deposit franchise for banks' supply of long-term lending in the Indian context. The Indian context provides a unique setting to explore three important issues: (i) deposit franchise of state-owned banks compared to that of private sector banks, (ii) atypically high holdings of long-term government securities by many Indian banks prior to the credit boom, and also in general; and (iii) the sharp rise in lending to the infrastructure sector in the 2000s.

We present four main sets of findings. First, we show that even in the face of a volatile central bank policy rate (RBI Repo rate), banks managed to maintain stable net interest margins. This appears to be the result of banks matching the sensitivity of their interest expenses and interest income to the RBI Repo rate. Second, we hypothesise and provide evidence for two distinct channels of deposit franchise for private and public sector banks: deposit market concentration of

\(^1\)Shah (2015) finds a 300% increase in infrastructure lending during the period, with the exact estimate depending on the definition of infrastructure used. However, the trends are largely the same

\(^2\)After an asset quality review by the Reserve Bank of India, conservative estimates placed the ratio of non-performing loans to total assets at more than 6%, among the highest in the world
private sector banks and the government guarantees of state-owned banks allow them to maintain stable interest expense through changing Repo rate environments. We find a significant negative relationship between deposit market concentration and interest expense sensitivity to Repo rate for private sector banks. Public sector banks, on the other hand, show lower interest expense sensitivity than private banks in general, and unlike the private sector banks, this measure is not linked to their deposit market concentration. We interpret this finding as evidence that public sector banks derive their deposit franchise from the explicit sovereign guarantee, and thus deposit market concentration is of less relevance to these set of banks. Third, an immediate consequence of the matching is that banks with strong deposit franchise, whose interest expenses are low and insensitive to RBI Repo rate, tend to engage in substantial maturity transformation. We find evidence for this: banks with low sensitivity of interest expenses to market rates tend to hold significantly more long-term fixed rate securities, which are primarily government bonds in the Indian context, and long-term fixed rate loans such as infrastructure, as compared to banks with higher sensitivity of interest expenses to market rates. Fourth, we document that with the sudden rise in government bond yields starting in 2004, banks with stronger deposit franchises shift away from long-term investments to the default risk prone infrastructure sector. Correspondingly, we also find that ex-post, banks with lower sensitivity of interest expense to Repo rate have higher non-performing loans. These findings imply that while maturity transformation may allow banks to hedge their net interest margins against interest rate risk, it can also increase exposure to default risk if such long-term fixed rate lending is to riskier sectors such as infrastructure.

We begin our analysis by showing the change in the average asset portfolio of Indian banks over the boom period. Historically, Indian banks were characterised by extremely high holdings of long term government securities on account of high statutory liquidity ratios with no mark-to-market requirements. However, from the late 1990s and early 2000s, the RBI progressively reduced the statutory liquidity ratio and increased the implicit costs of holding these securities through additions of modest risk weights among various other regulatory measures. Despite these reforms, many banks continued to hold government bonds far in excess of the minimum requirements. Ceilings on held-to-maturity category, introduced in 2000, exposed banks with large holding of long-term fixed rate securities to a reversal in the interest rate cycle. In 2004, as the Fed finally started raising rates
for the first time since May 2000, and oil prices rose sharply due to Hurricane named Ivan that hit the United States and neighbouring countries, there was a sudden and significant rise in Indian government bond yields. On account of this rise in bond yields and corresponding fall in prices, banks suffered substantial mark-to-market losses, and rapidly substituted away from long-term securities towards long-term loans. We show that, from 2004 to 2008, the average ratio of long term securities to bank assets declined drastically from about 0.30 to 0.17, while the ratio of infrastructure loans to assets doubled from 0.035 to close to 0.07.

We note that even in the presence of maturity mismatch, the banks’ net interest margin were mostly insulated from changes in the Repo rate. Although the Repo rate fluctuated from more than 8% to almost 4% over this period, the net interest margin and return on assets remained at around 3.5% and 1% respectively, with close to zero correlation with the Repo rate. We explain this observation by analysing the two components of net interest margin: interest expense and interest income. We compute the interest expense (income) sensitivity to changes in Repo rate by regressing the change in interest expense (income) divided by assets on contemporaneous and lagged changes in the Repo rate, and refer to these measures as interest expense beta and interest income beta respectively. We find a strong match between the sensitivity of these two components to changes in the Repo rate, with a 100 bp increase in interest expense rate due to changes in Repo rate associated with a 99.6 bp increase in the interest income rate. This ensures that banks’ net interest margins and return on assets are largely insensitive to changes in the Repo rate. We directly test for this sensitivity of ROA, and find no link to the changes in Repo rate. Importantly, we find that the average maturity of a bank’s assets, and correspondingly their exposure to infrastructure, is indeed negatively related to their interest expense betas, implying that banks with stronger deposit franchise (lower interest expense beta) engage in maturity transformation to hedge against interest rate risk.

While interest expense beta, our primary measure of the strength of deposit franchise of banks, appears to be relevant for the lending behaviour of banks, it is not very informative with regards to identifying the source of this deposit franchise. We hypothesise that a crucial determinant in the case of emerging economies such as India is state ownership. This is because all public sector (state-owned) banks are endowed with explicit government guarantee. Given the significance of such
a guarantee in an emerging economy with a weak financial sector, deposits with public sector banks are generally viewed as more attractive than those with private sector banks, ensuring stronger deposit franchise irrespective of the individual banks’ deposit market concentration\(^3\). In order to verify this, we compute the interest expense sensitivity to changes in Repo rate by regressing the change in interest expense divided by assets on contemporaneous and lagged changes in the Repo rate, with the latter now also interacted with an indicator variable for public sector banks. We find that the interest expense beta of public sector banks is lower than that of private sector banks, in response to a 100 bp increase in the Repo rate, the increase in interest expense rate of public sector banks is lower by 9.4 bp compared to private sector banks.

Another important determinant of bank interest expense betas highlighted in the literature is deposit market concentration. We calculate this measure at the bank level as the weighted average of the district (equivalent of counties in the US) level concentration across districts in which a bank operates its branches, referring to it as the bank-HHI. If public sector banks primarily derive their deposit franchise from state ownership, the relevance of this measure should be greater for private sector banks relative to public sector banks. To test whether the link between a bank’s deposit market concentration and deposit franchise is stronger for private sector banks, we run the same regression as above, now interacting the changes in Repo rate with a measure of bank-HHI. We find strong evidence for our hypothesis: private sector banks with above median bank-HHI are associated with an interest expense beta lower by 0.191 relative to that of below median HHI banks, with the relation significant at the 1% level. However, for public sector banks, bank-HHI is not significantly related to the interest expense beta. We interpret these findings as evidence of separate determinants of deposit franchise for public and private sector banks, with lower interest expense betas for these sets of banks corresponding to government guarantees and deposit market concentration respectively.

Finally, we conduct a more formal analysis of the relevance of deposit market franchise through a within district comparison of the evolution of sectoral lending across banks. Prior to the early 2000s, long term lending avenues to commercial banks in India were scarce. In addition to some

\(^3\)However, this state support comes at the cost of having to operate a larger fraction of their branches in rural regions, hurdles in changing hiring practices to reduce significantly higher salary expenses etc., resulting in significant operating expenses relative to private banks
institutional and structural factors which we describe in the next section, the slowing economy also led to diminished long-term borrowing demand. Therefore, banks mainly had the option of either investing in long-term government securities or advancing short-term loans. Since banks with weaker deposit franchise are characterised by relatively higher variable costs in the form of interest expenses and lower fixed costs of operation, they could afford to lend short-term at flexible rates even during the falling interest rate environment, because their interest expenses also fell commensurately. However, this was less viable for banks with stronger deposit franchise given the high fixed costs of operation. Therefore, these banks had a stronger incentive to invest in high duration (long term and fixed rate) government securities in order to profit from mark-to-market (MTM) gains on such securities during falling interest rate environments. From 2004, rising government bond yields due to higher oil prices and improving real activity were associated with a corresponding reversal in the Repo rate trend and mark-to-market losses on long-term fixed rate securities, intensifying the switch from these securities to long-term fixed rate loans. We aim to use ex-ante heterogeneity across banks in exposure to long-term fixed rate securities in 2004 to study the relevance of deposit franchise for bank lending behaviour during this period. We hypothesise that banks with stronger deposit franchise should be expected to have higher exposure to long term fixed rate securities in 2004. Our theory then suggests that these banks would be more inclined to substitute towards long-term fixed rate loans post 2004 due to mark-to-market losses on legacy securities as bond yields started rising.

However, simply using data on exposure of banks to long-term securities may be incorrect, on account of significant issuance of long-term flexible rate securities during this period. Since we lack the data to separately identify exposure to long-term fixed rate securities, we use an alternate measure instead. In 2002, banks in India were mandated by the RBI to build Investment Fluctuation Reserves to account for banks’ exposure to duration risk. From our arguments above, it follows that banks with higher exposure to long-term fixed rate securities would be expected to have higher investment fluctuation reserves. We therefore use the ratio of investment fluctuation reserves to total assets (IFR rate) in 2004 to proxy for banks’ deposit franchise. As justification for this choice, we show that banks with higher IFR ratio in 2004 were indeed characterised by lower sensitivity of interest expense rate to market rates. Consistent with our hypothesis, we find that banks with higher IFR rates in 2004 substantially increased their lending to infrastructure sector post 2004.
In order to further substantiate our results, we also conduct a more direct exercise where we show that heterogeneity in bank infrastructure lending can largely be explained by interest expense sensitivity of Indian banks to market rates, estimated using data prior to the credit boom. We find that banks with low interest expense betas significantly increased infrastructure lending over the period relative to banks with high interest expense betas.

Finally, we analyse whether this lending behaviour can be rationalised by higher demand for infrastructure loans from a subset of the banks instead of a supply side explanation. While controlling for district-time fixed effects can address variations in district level demand, it is possible that the demand for infrastructure loans was variable across the cross section of banks. For instance, a political economy theory may imply that firms demand infrastructure loans from state-owned banks. In order to test whether demand for infrastructure loans varied across banks, we estimate bank-state-year level interest rates on infrastructure loans from BSR data. We hypothesise that if demand were the main cause of this heterogeneous lending behaviour, then we should find a rise in infrastructure lending rates among the subset of banks which were central to the credit boom. However, consistent with the supply side explanation, we find that the infrastructure lending rates of banks with strong deposit franchise did not increase relative to the rates offered by banks with weak deposit franchise, despite the significant difference in lending to the sector during the period.

Our paper is organized as follows: Section 3 provides the institutional details. Section 4 explains the data and deposit concentration measure used in our analysis. Section 5 examines the bank interest rate hedging in India. Section 6 links the interest rate risk hedging to the lending behaviour of banks. Section 7 examines potential measures of deposit franchise of banks. Section 8 explains the identification results, Section 9 provides some robustness results, and Section 10 concludes.

2. Literature Review

Banks ‘transform’ short-term deposits into long-term loans. This primary attribute of maturity transformation has received perennial interest in both Macroeconomics and Finance literature. A mismatch in the maturity of assets and liabilities are associated with two interrelated but distinct
risks: liquidity risk and interest rate risk. Implications of liquidity risk for banks has previously been studied, for instance, by Brunnermeier et al. (2012) and Bai et al. (2018). More closely related to our study, Li et al. (2019) relate liquidity risk to bank deposit market power and use these insights to explain heterogeneity in the extent of bank maturity mismatch undertaken by banks. On the other hand, Drechsler et al. (2021) focus on the interest rate risk hedging motive of maturity transformation. This justification for maturity mismatch contrasts with theories underlying the ‘balance sheet channel’ of monetary policy emphasised by Gertler and Bernanke (1989), and Bernanke et al. (1999), which follow the intuition that if banks have short term liabilities and long term fixed rate assets, then an increase in market interest rates exposes banks to losses. Drechsler et al. (2021) argue that instead of exposing banks to interest rate risk, maturity mismatch is actually a way to hedge against it. Hoffmann et al. (2019) provide empirical evidence consistent with this theory from 104 banks in 18 euro area countries. They find that banks’ exposure to interest rate risk is small on aggregate, but heterogeneous in the cross-section and depends significantly on the cross-country differences in loan-rate fixation conventions for mortgages. The evidence we derive from India also seems to favor the motivation based on hedging interest rate risk rather than the one based on liquidity risk, at least for the period we consider. In this paper, we contribute to the above literature by extending the analysis of Drechsler et al. (2021) along three dimensions: First, we substantiate the findings of Drechsler et al. (2021) by providing further evidence from a prominent emerging economy banking sector. Second, we reinterpret the significance of their findings in the presence of an incomplete asset market characterised by scarce non-risky long-term fixed rate lending opportunities. And finally, we analyze a financial system where the banks differ in their source of deposit franchise, i.e. state-owned banks derive their deposit franchise from government guarantees whereas private sector banks derive theirs from deposit market concentration.

Our focus on incomplete asset markets and the consequent exposure of banks to interest rate risk or default risk also relates this study to the literature analysing the banks’ risk management. Jarrow and Turnbull (2000) theoretically integrate interest rate and credit risk and Alessandri and Drehmann (2010) build upon their research by studying the interactions between interest rate risk and default risk in a framework where these risks are analysed jointly. We add to this literature by providing some empirical evidence that in an economy with incomplete asset markets, banks
may need to choose between hedging against interest rate risk or default risk. If asset markets are incomplete, then banks hedging against interest rate risk may end up exposing themselves to default risk.

Our paper is also related to the substantial literature which seeks to identify how banks’ liabilities may affect transmission of monetary policy to banks’ credit supply. Duquerroy et al. (2020) find that banks’ cost of funding is a crucial channel of the transmission of monetary policy to credit supply. Paz (2020) finds that heterogeneity in bank capitalization rates play an important role in the transmission of monetary policy to bank lending. He finds that highly-capitalized banks reduce their lending more after a monetary tightening and have a riskier portfolio. Moreover, default rates on their loans increase relatively more after a tightening in monetary policy. In another related study, Wang et al. (2020) quantify the impact of bank market power on monetary policy transmission through banks to borrowers by estimating a dynamic banking model in which monetary policy affects imperfectly competitive banks’ funding costs. They find that bank market power is an important determinant of the transmission of monetary policy to borrowers, with an effect comparable to that of bank capital regulation.

Finally, our paper is related to a strand of literature which studies the relevance of state-ownership in the financial sector. Acharya et al. (2019) analyse the impact of state ownership on the liquidity risk faced by Indian banks during Great Recession. Their work, in turn, ties to a vast body of literature on the impact of state-owned banks in less financially developed countries such as La Porta et al. (2002) and Bonin et al. (2014).

3. Institutional Details

The Indian banking sector is characterised by the co-existence of government-owned state banks [known in India as public-sector banks (PSBs)] and private sector banks. Historically, the banking sector was dominated by public-sector banks, with the government having a major say in the banks’ lending decisions to corporates. Economic liberalisation in the 1990s ushered in a new phase of the Indian banking sector by removing barriers to the entry of private sector banks and subsequently improving their ease of functioning through further reforms. Consequently, the dominance of the
public sector banks started to recede over the next two decades and the Indian banking sector transformed from being primarily centrally governed to a system driven by market forces. In this section we highlight some of the institutional details relevant to our study.

3.1. Credit Boom, Lending to Infrastructure, and Long-term Investment

India experienced a massive boom in bank credit from 2002-2012, with the bank credit-to-GDP ratio rising from close to 20% in 2002 to almost 50% in 2012. A substantial share of the increase in bank credit during this time was accounted for by the infrastructure sector. Outstanding bank credit to the sector increased from Rs.95 billion in March 2001 to Rs.9,853 billion in March 2016 (Vishwanathan, 2016). At the height of the credit boom from 2004 to 2008, bank share of project loans related to infrastructure and construction in total assets doubled, with a corresponding fall in their share of long-term investment in total assets to almost half within the period as shown in Figures 1 and 2.

Lending to infrastructure sector is inherently different from lending to other sectors. Usually, infrastructure projects require long-term financing ranging from 10 to 25 years. With developed financial markets, a majority of such lending is financed through long term bonds by institutions with corresponding long-term liabilities. However, in an economy with underdeveloped bond markets like India, a majority of the lending to infrastructure is carried out by commercial banks. Since bank deposits are of a significantly lower maturity, lending to infrastructure exposes banks to substantial maturity mismatch, thus posing a threat to the financial sector as a whole. Moreover, infrastructure projects in India are subject to diverse risks including abrupt changes in government policies, issues related to project clearances, natural calamities etc. These factors have an important bearing on the economic viability of the project and ultimately that of the infrastructure loan. Finally, as highlighted by Vishwanathan (2016), infrastructure projects are often extremely complex and involve a large number of parties. All of these features contribute to the credit and liquidity risk associated with infrastructure loans in India.

A range of factors played a role in the sharp rise in lending to infrastructure and decline in long-term investment during this period. Prior to 1997, Development Finance Institutions were the main providers of finance to the infrastructure sector. The need for these specialised institutions
arose primarily because of the inability of scheduled commercial banks to shoulder the liquidity and credit risks associated with lending to the infrastructure sector. By providing DFIs with long term subsidised finance, the government had essentially assumed the role of primary financier to infrastructure projects. With subsequent development of the financial sector and increased borrowing need of a rapidly growing infrastructure sector, the government felt the need to diversify the sources of lending. Thus, in 1997, with a view to increase competition in this sector, the government put a stop to the issuance of tax-free bonds by DFIs (Sen, 2018). Since these were the main sources of low cost funds for these institutions, this decision was key to their subsequent decline. This move was accompanied by other steps to free up the resources of scheduled commercial banks, such as the reduction in the Statutory Liquidity Ratio, which was reduced from 32% to 25% in 1997. Additionally, RBI imposed a risk weight of 2.5% on government securities and a ceiling on held to maturity securities (25% of investment and 25% of demand and time liabilities) in 2000 and 2001 respectively. The resulting increased duration risk made it less attractive for banks to keep their funds parked in these long term securities and is one potential cause of the stark substitution from long-term investment to long-term loans by banks during this period.

Investment Fluctuation Reserves: Having introduced a ceiling on held to maturity securities in 2001, RBI sought to ensure banks with significant duration risk on their balance sheets had enough reserves to weather potential treasury losses from swings in the Repo rate. In keeping with this objective, in 2002 RBI advised banks to build an investment fluctuation reserves of a minimum of 5% of investments classified in the held-for-trading and available-for-sale categories, since it reasoned that held-to-maturity securities did not pose an interest rate risk to the banks on account of not being traded. According to Sy (2007), these reserves were initially introduced as an alternative to Basel 1 requirements. However, after 2005, capital charge for market risk was introduced in accordance with the Basel norms, with the reserves gradually merged into Tier 1 capital. Since IFR provides a more direct measure of our subject of interest, i.e. bank exposure to high duration securities, as opposed to Tier 1 capital which has a broader role in guarding banks against a variety of risks, we are fortunate that IFR was replaced by capital charge only post-2004. Data show that IFR grew significantly till 2005, but then fell drastically as the Basel norms came into place.

Next, we turn our attention to a brief analysis of the characteristics of the Indian banks with
different ownership structures:

Public Sector Banks: In principle, both public and private sector banks are insured by the Deposit Insurance and Credit Guarantee Corporation (DICGC). However, as of 2007, this deposit insurance coverage was limited to only Rs.100,000 (approximately $2000) per depositor. Moreover, as highlighted in Iyer and Puri (2012), the processing of deposit insurance claims is associated with significant uncertainty and delay which reduces their effectiveness. In this context, explicit government guarantees endowed to public sector banks by virtue of The Banking Regulations Act (1949), which guarantees all obligations of public sector banks in the event of their failure, assume much greater importance. Acharya et al. (2019) emphasise the relevance of these sovereign guarantees for the deposit flight from private to public sector banks in 2007-09.

We argue that sovereign guarantees endow public sector banks with strong deposit franchise and enables them to pay interest rates that are low and insensitive to the RBI Repo rate. This sovereign backing, however, is not free of cost. Public sector banks are subject to the same operational constraints and rigidities as the rest of government enterprises in India. In order to satisfy the governments financial inclusion goals, public sector banks operate a wider network of branches across urban as well as rural regions. This means that they significantly lag behind private and foreign sector banks in terms of average deposits/credit per branch (Chatterjee, 2006). Moreover, PSB employee productivity is also significantly lower as compared to private sector banks because of a difference in the employment practices across the two sets of institutions. A report by Financial Express (Financial Express, 2019) highlights this stark difference: the officer to clerk ratio for private banks was 16:1 compared to the 1.25:1 ratio for public sector banks. To the extent that banking is an increasingly specialised service, hurdles faced by government owned institutions in changing their hiring practices contribute significantly to the cost inefficiencies of the PSBs relative to PVBs. In this paper, we treat these costs as the fixed costs of sovereign guarantees.

Private Sector Banks: While sovereign guarantees are the source of the strong deposit franchise of public sector banks, private sector banks have to invest in building deposit market concentration in order to strengthen theirs. In this sense, the functioning of private sector banks corresponds directly to the setup in Drechsler et al. (2021). While the source of deposit franchise may be different for public and private sector banks, its influence on bank lending behaviour is quite
similar. For both public and private sector banks, deposit franchise is associated with fixed operating costs, which make their funding resemble long-term debt and thus incentivise them to undertake maturity transformation. In the following sections, we argue that sources of deposit franchise, i.e. sovereign guarantees and deposit market concentration for PSBs and PVBs respectively, are important determinants of banks’ lending to infrastructure from 2004-2008.

3.2. Consequences

While there were a myriad of internal and external reasons for the sharp rise in non-performing loans in the banking sector, infrastructure loans contributed significantly to the mess. Lahiri and Neelakatan (2021) find that four sectors, basic Metals and Metal Products, Construction, Electricity, Gas, and Water, and Mining and Quarrying, all of which are closely related to infrastructure, were responsible for nearly half of the total NPLs as of 2018. Worrying signs regarding the quality of infrastructure loans had begun appearing as early as 2008 (Chari et al., 2021). In view of the deterioration in the cash flow of overly leveraged firms due to the Great Recession, the RBI announced a ‘Special Regulatory Treatment’ for restructuring debt. While this asset quality forbearance was initially introduced as a temporary relief measure, restructuring of assets became the norm. Chari et al. (2021) find that by 2013, restructured assets constituted close to 70% (50%) of stressed assets for public (private) banks. From 2014, RBI started the process of winding down widespread asset restructuring initiating the ‘Asset Quality Review’, under which banks were forced to recognise non-performing loans in their balance sheets and the proportion of restructured assets finally began to decline. Within a couple of years of the implementation of AQR, the proportion of non-performing loans in total bank assets increased drastically from 3.4% of gross advances in March 2013 to 9.9% in March 2017.

4. Data

We use annual branch and bank level data from the Reserve Bank of India to compute our bank-level HHI measure, for our bank-district level regressions, for data on sector and maturity wise bank lending, and for our subsequent analysis on branch level non-performing loans. Data on the Repo
rate is also obtained from RBI. While bank level data is publicly available, branch-level data is only collected for regulatory purposes and is proprietary. The regulatory branch-level data, also called Basic Statistical Returns (BSR) has previously been used by Das et al. (2015) and Cole (2009). This data is collected as of March 31st of every year and covers a wide range of variables, such as amounts of deposits by type (demand, savings and term), amount of credit by sector, weighted average lending rate, branch characteristics and personnel characteristics (skilled/unskilled). Data on NPLs is also from the RBI, though it is not collected as part of BSR and hence only 77% of the branches have data on NPL.

We use quarterly financial data from CMIE Prowess in order to compute the sensitivity of bank level interest expense, interest income, return on assets to changes in the RBI Repo rate, and to derive the aggregate time series for average net interest margin and return on assets. We also obtain bank level data on investment fluctuation reserves and total assets from Prowess. This is a private database covering the universe of listed companies as well as a large set of unlisted companies by compiling data from audited annual reports of companies.

4.1. Our sample of banks

We use an unbalanced panel of bank-district level deposit and credit data from 2000 to 2016 for our regression analysis. In regressions involving Repo rate, our sample begins from 2002-03 because RBI Repo rate has been used as a monetary policy instrument since then. Moreover, in regressions involving BSR data, our data is only available till 2016. Our data covers 639 districts, however some are omitted due to lack of relevant data. Districts are economically integrated areas, comparable to counties within the US. We restrict the sample to banks that have at least 30 quarterly observations between 2002 and 2016. This is a weaker inclusion criterion than the one in Drechsler et al. (2021), which included banks with a minimum of 60 quarterly observations. However, it is necessary on account of the shorter time span of our data. This yields a sample of 43 banks, with 28 public sector banks and 15 private sector banks.
5. Bank interest rate risk hedging in India

We seek to explore whether the lending behaviour of Indian banks is linked to their deposit franchise through the incentive to hedge against interest rate risk. Figure 3 shows that the average net interest margins and return on assets of Indian banks were indeed quite stable in the face of significant RBI Repo rate movements, implying that banks may be matching the Repo rate sensitivities of their interest income and interest expenses. In this section, we formally test for this by using the ‘cash flow approach’. In this approach, we estimate the impact of changes in the RBI Repo rate on banks’ interest income, interest expenses, and return on assets (ROA). The intuition behind this is straightforward: if a bank is unhedged against interest rate risk due to, for instance, floating rate assets and fixed rate liabilities, a decrease in the RBI Repo rate should result in a corresponding decrease in the interest income with the interest expenses remaining unchanged. Relatedly, such an unhedged bank’s ROA should display a higher sensitivity to changes in the interest rate, given that interest income and interest expenses are important components in the calculation of ROA.\(^5\)

Therefore, measures of the sensitivity of a banks’ interest income and interest expense to the RBI Repo rate should serve as useful indicators of the extent to which a bank is hedged against interest rate risk.

In order to derive the estimate of banks’ interest expense sensitivity, we run the following time series regression for each bank \(i\):

\[
\Delta \text{IntExp}_{i,t} = \alpha_i + \sum_{\tau=0}^{3} \beta_{i,\tau} \Delta \text{RepoRate}_{t-\tau} + \epsilon_{i,t} \tag{1}
\]

where \(\Delta \text{IntExp}_{i,t}\) is the change in bank \(i\)’s interest expense rate from \(t-1\) to \(t\), \(\Delta \text{RepoRate}_{t}\) is the change in the RBI Repo rate from \(t-1\) to \(t\), and \(\alpha_i\) are bank fixed effects. The interest expense rate measures the total quarterly interest expenses (total interest expenses on deposits, wholesale funding, and other liabilities) divided by quarterly average assets and then annualized (multiplied by four). We allow for three lags of the RBI Repo rate changes to capture the cumulative effect of the RBI Repo rate changes over a full year. The estimate for bank \(i\)’s expense beta is then the sum

\(^{5}\)Note that return on assets is calculated as the sum of net interest margin and fee income net of operating costs and loan losses
of the coefficients in the above regression, i.e. $\sum_{\tau=0}^{3} \beta_{i,\tau}$. Using the above regression specification, we also obtain the interest income and ROA betas, thus deriving the three estimates used in the subsequent analysis: $\beta_{i,\text{Inc}}, \beta_{i,\text{Exp}}, \beta_{i,\text{ROA}}$.

5.1. Summary statistics

Table 1 provides the summary statistics on interest income beta, interest expense beta, and ROA beta for the full sample and separately for public and private sector banks. The average expense and income beta are 0.568 and 0.559, meaning that interest expense and interest income increase by 57 bps and 56 bps, respectively, for every 100 bps increase in the RBI Repo rate. Public sector banks are characterised by expense and income betas of 0.532 and 0.541 whereas private sector banks show a similar difference in magnitudes of expense and income betas, which are 0.614 and 0.606, respectively. These statistics seem to imply that even in the relative scarcity of explicit hedging instruments, Indian banks are quite well hedged against interest rate risks. Relative to the results in Drechsler et al. (2021), the ROA beta is of a higher magnitude, 0.133 as opposed to 0.032, implying that banks in India are less hedged relative to the US.

5.2. Cross-sectional Analysis

To begin with, we conduct an informal cross-sectional test of the extent to which banks match interest sensitivities of their income and expenses.

Figure 5 provides a binned scatter plot to show the extent of sensitivity matching. It groups banks into 20 bins by expense beta and plots the average income beta for each bin. We find strong matching between banks’ interest income and expense betas. Ordinary least squares regression of interest income beta on interest expense beta yields a coefficient of 0.741 for the sample.

Figure 6 supports the above evidence by showing that interest rate sensitivity of banks’ return on assets is largely unrelated to that of interest expenses. Additionally, as also evidenced in the summary statistics, the values of ROA betas are much smaller than those for interest income and expense betas, implying that income and expense sensitivity matching shields the banks’ profitability from interest rate changes.
5.3. Panel analysis

In this section, we use a panel regression to test the extent to which banks match interest sensitivity of their income and expenses. As highlighted by DSS, the panel setup imposes a more stringent test of sensitivity matching relative to cross-sectional regressions of interest income beta on interest expense beta, because the panel setup tests whether banks match sensitivities lag by lag, instead of an average across all four lags. We run the following two-stage regressions to derive the extent of sensitivity matching:

First stage:
\[\Delta \text{IntExp}_{i,t} = \alpha_i + \delta_t + \sum_{\tau=0}^{3} \beta_{i,\tau} \Delta \text{RepoRate}_{t-\tau} + \epsilon_{i,t} \]

Second stage:
\[\Delta \text{IntInc}_{i,t} = \lambda_i + \theta_t + \delta \Delta \hat{\text{IntExp}}_{i,t} + \epsilon_{i,t} \]

The first stage is based on the original regression specification (eq. 1) for deriving the expense betas. In the second stage, we run a panel regression of interest income on the fitted value of interest expense beta from the first stage, controlling for individual and time fixed effects. The coefficient \(\delta \) measures the extent to which changes in interest expenses induced by changes in the RBI Repo rate are matched by changes in the interest income. A value of \(\delta \) close to one corresponds to a bank hedged against interest rate risk, since any variation in interest expenses due to a change in interest rate is perfectly compensated by a similar change in the interest income.

Since the betas are themselves estimated, there is a need to correct the standard errors. As in Drechsler et al. (2021), we address this issue by using block bootstrap, wherein the data are sampled in blocks to give the same correlation structure as in the original data. Taking a block to be the cross-section of banks in a given quarter enables us to capture the cross sectional correlation within a quarter. We estimate the betas and the beta matching regression for each of these samples and compute the distribution of coefficients to construct the standard errors.

Table 2 presents the panel regression results. We obtain a coefficient estimate of 0.996. This implies that a 100 bps increase in interest expenses induced by a change in RBI Repo rate is associated with a 99.6 bps increase in the interest income. Therefore, these results indicate that banks in India manage interest rate sensitivities on the asset and liability sides to ensure their Net
Interest Margins and Return on Assets is protected. Note that unlike the Drechsler et al. (2021) analysis where there is only interest rate risk, and can therefore always hedge themselves fully against this risk, banks in emerging economies such as India may face incomplete asset markets whereby hedging against interest rate risk comes at the cost of default risk. Given this context, strong hedging against interest rate risk by banks is a notable result.

Finally, Table 3 computes a similar two stage panel regression, with change in the return of assets of firm i from t-1 to t used as the dependent variable as follows:

First stage: \[\Delta \text{IntExp}_{i,t} = \alpha_i + \delta_t + \sum_{\tau=0}^{3} \beta_{i,\tau} \Delta \text{RepoRate}_{t-\tau} + \epsilon_{i,t} \]

Second stage: \[\Delta \text{ROA}_{i,t} = \lambda_i + \theta_t + \delta \Delta \text{IntExp}_{i,t} + \epsilon_{i,t} \] (3)

As expected, changes in interest expenses on account of changes in the RBI Repo rate have no significant effect on the firm profitability implying hedging of interest rate risk.

6. Deposit franchise and bank assets

In this section, we evaluate the relationship between asset portfolio of banks and their deposit franchise as measured by interest expense beta. Importantly, we test for whether banks’ exposure to infrastructure loans is related to their deposit franchise. The model presented in Drechsler et al. (2021) predicts that lower the interest expense beta of a bank, i.e. stronger a bank’s deposit franchise, greater the incentive for it to undertake long-term fixed rate lending. In view of the evident scarcity of safe long-term lending opportunities in India, we expect banks with low interest expense betas to have greater exposures to the risky infrastructure sector. Finally, we directly test for the relationship between banks’ interest expense betas and exposure to default risk by analysing their correlation with ex-post non-performing loans uncovered after an Asset Quality Review was undertaken in 2014.
6.1. Infrastructure lending

We now test the relation between a bank’s deposit franchise and the extent of its exposure to the infrastructure sector over the boom period. More specifically, we analyse the relationship between interest expense beta and the share of a bank’s lending to infrastructure as a proportion of its total assets. We classify infrastructure lending as the aggregate of lending to sectors closely related to infrastructure, and usually characterized by long-term fixed rate loans, namely: construction, metals, mining, and electricity, gas, water sectors. The exact classification of infrastructure related sectors is vague. While transport is also usually included as a crucial sector in infrastructure, according to an RBI report dated 2005\(^6\), lending by Indian scheduled commercial banks was primarily limited to transport operators, while project financing was extremely scarce. Since lending to transport operators is usually shorter term and at more flexible interest rates, we leave out transport from our definition of infrastructure.

In Figure 7a, we show the match between interest expense beta and the average increase in the share of infra lending to total lending during the period 2002 to 2016 using a binned scatter plot. As in the previous case, we find that share of lending to infrastructure sectors is negatively related to the interest expense betas of banks.

6.2. Relevance

This finding may have important implications for the financial system and the economy as a whole on account of the higher default risk associated with infrastructure loans. It is possible that in order to hedge against interest rate risk, banks with strong deposit franchise may be influenced to undertake excessive exposure to default risk. We explicitly test for this by comparing the interest expense betas of banks to their non-performing loans (NPL). However, on account of regulatory forbearance on restructured advances during the boom period (Chari et al., 2021) which carried on until the Asset Quality Review in 2014-15, obtaining an accurate measure of non-performing loans for Indian banks is a challenge. We therefore use the average of banks’ NPLs over the three year time period from 2014 to 2016 as a proxy for their exposure to default risk in the boom period. Figure 7b presents the relationship between interest expense beta and ex-post NPL ratio of banks.

\(^6\)RBI Report 2005
Consistent with our prediction, banks with low interest expense beta are associated with a greater ex-post NPL ratio, indicating a potential link between the deposit franchise of banks and their exposure to default risk.

Finally, in Figure 7c we further investigate the anecdotal evidence regarding the default risk associated with lending to infrastructure sectors using a binned scatter plot of ex-post NPL ratio against the share of infrastructure lending. We find that the data indicates a positive relation between the two variables, substantiating our argument that, at least in the Indian context, infrastructure lending is associated with substantial default risk.

While still preliminary, the results point towards a greater incentive for banks with stronger deposit franchise, i.e. lower interest expense beta, to hedge against interest rate risk at the cost of having to lend to riskier sectors characterised by long term fixed-rate borrowing, specifically the infrastructure sector. Consistent with the regular warnings by RBI (Reserve Bank of India, 2009), greater exposure to infrastructure sector during this boom period is associated with greater ex-post NPL ratios of banks.

7. Potential measures of deposit franchise

7.1. Deposit franchise and state-ownership

Results in the previous sections indicate that deposit franchise may have a significant bearing on the lending behaviour of the banks. But what determines the strength of a bank’s deposit franchise? In Table 4, we provide some evidence on the importance of state ownership for the sensitivity of interest expense to Repo rates. Here, we compute the interest expense sensitivity to changes in Repo rate by regressing the change in interest expense divided by assets on contemporaneous and lagged changes in the Repo rate, with the latter now also interacted with an indicator variable for public sector banks as shown in the equation below:

$$\Delta \text{IntExp}_{i,t} = \alpha_i + \delta_t + \sum_{\tau=0}^{3} \left(\beta^0_{\tau, psb} + \beta^1_{\tau, psb} \times 1\{PSB_i\} \right) \Delta \text{RepoRate}_{t-\tau} + \epsilon_{i,t}$$ \hspace{1cm} (4)$$

where $1\{PSB_i\}$ is an indicator variable which takes the value 1 for public sector banks and
We find that the interest expense beta of public sector banks is lower than that of private sector banks, with the coefficient of the interaction term being -0.094. This finding corroborates evidence in Acharya et al. (2019) that highlights the importance of government guarantees in shaping depositors’ behaviour and hence bank deposit rate decisions.

7.2. Deposit franchise and deposit market power

In this sub-section, we aim to test whether deposit market concentration, as measured by a bank level HHI measure, is informative in this context. In order to compute the bank-HHI, we start by computing a district level measure of HHI. Since the primary competition is between different banks within a district and not between different branches, we collapse the bank-branch level data to the bank-district level for the calculation of the district level HHI. This district level HHI is at the district-year level and equals the sum of squared deposit market shares for all banks within a given district. To capture the funding deposit concentration of the bank, we build a measure of Bank-HHI that is equal to the weighted average of the district HHI, where the weights are determined by the fraction of deposits raised in each district where the bank operates. This variable is used in the subsequent analysis as a measure of the deposit market power of a bank.

In Figure 8a, a binned scatter shows the negative relation between interest expense beta and bank HHI. This is consistent with the Drechsler et al. (2021) perspective that the deposit market power, as measured by a higher bank-HHI, may allow banks to set deposit interest rates that are low and insensitive to changes in the monetary policy rate. To formally analyse the relationship between bank-HHI and interest sensitivity matching, we run the following regression in Table 5:

$$\Delta \text{IntExp}_{i,t} = \alpha_i + \delta_t + \sum_{\tau=0}^{3} \left(\beta^{0}_{\tau, hhi} + \beta^{1}_{\tau, hhi} \times 1\{\text{High HHI}_2005,i}\right) \Delta \text{RepoRate}_{t-\tau} + \epsilon_{i,t}$$ (5)

where $1\{\text{High HHI}_2005,i\}$ is an indicator variable which takes the value 1 for banks characterised by above median deposit market concentration in 2005 i.e. bank-HHI. We find that banks with above median HHI are characterised by a reduced sensitivity of interest expense rate to Repo rates, by a magnitude of -0.096. This finding complements that of Figure 8a in showing that deposit market concentration is positively related to banks’ deposit franchise.
From the evidence so far, it appears that bank-HHI is strongly associated to the deposit franchise of banks. The heterogeneous ownership structure of the banking sector in India, with the mix of public sector banks and private sector banks commanding non-negligible market shares, enables us to further analyse whether the ownership has a significant impact on the link between bank-HHI and deposit franchise. We hypothesise that the relevance of bank-HHI for deposit franchise should be greater for private sector banks relative to public sector banks. This is because all public sector banks are endowed with explicit government guarantee. Given the significance of such a guarantee in an emerging economy with a weak financial sector, deposits with public sector banks are generally viewed as more attractive than those with private sector banks, ensuring stronger deposit franchise of public sector banks irrespective of their deposit market concentration. In Figure 8b and Figure 8c we provide the scatter plots for the relation between deposit market concentration and interest expense beta separately for public and private sector banks. We find that the negative relation only holds for the private sector banks, while the public sector banks do not show in similar trends.

In order to further substantiate these findings, we rerun Equation 5 separately for private and public sector banks. The results for this regression are also provided in Table 5. We find strong evidence for our hypothesis: private sector banks with above median bank-HHI are associated with an interest expense beta lower by 0.191 relative to that of below median HHI banks, with the relation significant at the 1% level. However, for public sector banks, bank-HHI is not significantly related to the interest expense beta, even at the 10% level. We interpret these findings as evidence of separate determinants of deposit franchise for public and private sector banks, i.e. government guarantees and deposit market power respectively.

7.3. Deposit franchise and investment fluctuation reserves

Prior to the early 2000s, long term lending avenues to commercial banks in India were scarce. In addition to some institutional and structural factors, the slowing economy also led to diminished long-term borrowing demand. Therefore, banks had the option of either investing in government securities or advancing short term loans. Since banks with weaker deposit franchise are characterised by relatively higher variable costs in the form of interest expenses and lower fixed costs of operation, they could afford to lend short term at flexible rates even during the falling interest rate environment,
because their interest expenses also fell commensurately. However, this was less viable for banks with stronger deposit franchise given the high fixed costs of operation. Therefore, these banks had a stronger incentive to shift towards high duration (long-term and fixed-rate) government securities in order to profit from mark-to-market (MTM) gains on such securities during falling interest rate environments. In 2002, banks were required to build Investment Fluctuation Reserves of a minimum of 5% investment in held-for-trading (HFT) and available-for-sale (AFS) securities to account for potential mark to market losses. From our arguments above, it follows that banks with higher deposit franchise would be expected to have higher investment in AFS and HFT, and would thus be expected to have higher investment fluctuation reserves as a fraction of their total assets in the pre-2005 period.

In Figure 9, we show using scatter plots how the ratio of banks’ investment fluctuation reserves to their total assets in 2005 relates to their lending towards infrastructure and housing sectors after 2005, i.e. sectors prominently associated with fixed- and flexible-interest rates respectively. We find that banks with higher investment fluctuation reserve ratio in 2005 were characterised by higher increase in exposure to the infrastructure sectors (Figure 9a) and lower increase in exposure to the housing sectors after 2005 (Figure 9b) relative to banks with low IFR rates. In order to analyse how IFR ratio is associated to the sensitivity of banks’ interest expense rates to changes in the Repo rate, we run the following regression:

$$\Delta \text{IntExp}_{i,t} = \alpha_i + \delta_t + \sum_{\tau=0}^{3} \left(\beta^0_{\tau,IFR} + \beta^1_{\tau,IFR} \times 1\{\text{High IFR}_{2005,i}\} \right) \Delta \text{RepoRate}_{t-\tau} + \epsilon_{i,t} \quad (6)$$

where $1\{\text{High IFR}_{2005,i}\}$ is an indicator variable which takes the value 1 for banks with above median IFR ratio in 2005 and value 0 otherwise. Since the organizational structures of public sector banks and private sector banks differs so significantly, we define median separately for each ownership category. As can be seen in Table 6, above median IFR banks are associated with lower responsiveness to the Repo rate. The elimination of significance with inclusion of time fixed effects may be due to the very small sample size we are left with when running regression separately for public- and private sector banks, but the significance of results with bank fixed effects, and robust results for the entire sample of banks leads us to believe the channel we suggest may indeed be
valid.

8. Identification

We now conduct a more formal analysis of the relevance of deposit market franchise for bank lending decisions. As can be seen in Figure 1 and Figure 4, with the exogenous shocks to government bond yields and increased domestic demand, the asset portfolio of the Indian banking sector underwent significant change, with the Indian banks transitioning from largely holding government securities to private sector lending, especially to sectors characterise by long term fixed rate loans, such as infrastructure. We seek to conduct a within district comparison of the evolution of sectoral lending across banks from 1999 to 2016 to identify whether ex-ante variations in deposit franchise had a significant role to play in the lending patterns observed after 2004. By controlling for district-time fixed effects and bank-district fixed effects, we hope to be able to disentangle the supply side variations arising due to ex-ante deposit franchise of banks.

8.1. Investment Fluctuation Reserves in 2004 and Infrastructure Lending

Since the interest expense beta analysed so far is calculated at the individual bank level using a time series regression for the whole sample from 2002 to 20167, it does not lend itself easily to our regression analysis due to the lack of sufficient pre-2004 data to estimate beta. Moreover, we have also provided evidence that deposit market concentration as measure by bank HHI is not a suitable measure of deposit franchise for public sector banks, which make up the bulk of the financial sector in India. Hence, we use the ratio to investment fluctuation reserves to total assets of Indian banks at the end of 2004 to identify variations in deposit franchise across banks8.

We conduct the following difference-in-differences regression analysis to identify the impact of banks’ ex-ante deposit franchise on their lending post 2004:

\[
\frac{\text{Infra}_{id,t}}{\text{Infra2002}_{id}} = \alpha_{d,t} + \delta_{i,d} + \beta \times \mathbb{1}\{\text{High IFR ratio}_{2004,i}\} \times \mathbb{1}\{\text{Post}_{2004,t}\} + X_{2004,i} + \epsilon_{id,t} \quad (7)
\]

7Repo rate has been used as a monetary policy instrument since 2002
8Note that in our analysis, 2004 refers to the financial year April 2003- March 2004
where \(\frac{\text{Infra}_{i,d,t}}{\text{Infra2002}_{i,d}} \) refers to the ratio of end-of-period outstanding infrastructure loans by bank \(i \) in district \(d \) and year \(t \) relative to the ratio of end-of-period infrastructure loans by bank \(i \) in district \(d \) in year 2002. We use 2002 as the baseline year for the normalization because of two reasons: First, choosing an year before 2002 leads to the loss of a number of banks because of missing data before then, and second, Indian banks were largely opened up to private sector lending since 2002 (this can also be seen in the Figure 1), and hence 2002 is apt as the benchmark year. \(\alpha_{d,t} \) refers to district-time fixed effects and \(\delta_{i,d} \) refers to bank-district fixed effects, with the former being the crucial inclusion so as to control for demand side effects. IFR ratio is measured as the investment fluctuation reserves relative to the total assets for a bank. The variable \(1 \{ \text{High IFR ratio}_{2004,i} \} \) is an indicator variable which takes the value 1 if the IFR ratio of a bank at the end of 2004 is above the median IFR ratio of Indian Banks. \(1 \{ \text{Post}_{2004,t} \} \) is an indicator variable which takes the value 1 for years after 2004. Controls \(X_{2004,i} \) include size of the banks, fraction of total deposits raised in metropolitan cities, and ownership category of the banks.

We show the results for these regressions in Table 7. We find that banks with above median IFR ratio in 2004 were characterised by higher lending to sectors associated with infrastructure in the boom period post 2004.

In Figure 10, we show the event study plot for our fixed effects regression analysis of infrastructure lending:

\[
\frac{\text{Infra}_{i,d,t}}{\text{Infra2002}_{i,d}} = \alpha_{d,t} + \delta_{i,d} + \sum_{\tau=1999}^{2016} \beta_{\tau} \times 1 \{ \text{IFR ratio}_{2004,i} \} \times 1_{t} + X_{2004,i} + \epsilon_{id,t} \quad (8)
\]

These plots serve to show that the parallel trends assumption holds in the pre-period of our study, and to show how lending to infrastructure varied by the ex-ante IFR ratio of the banks over the time period we consider.

An alternate explanation for the observed pattern of infrastructure lending may be increased demand for infrastructure loans after 2004 from a subsection of the banks. If this were the case, we would expect a relative increase in interest rates on infrastructure loans of banks with above
median IFR ratio in 2004. We test this using the regression specification:

\[
\text{Infra Int Rate}_{id,t} = \alpha_{d,t} + \delta_{i,d} + \beta \times 1 \{\text{IFR ratio}_{2004,i}\} \times 1 \{\text{Post}_{2004,t}\} + X_{2004,i} + \epsilon_{id,t}
\] (9)

Contrary to the demand driven explanation, we find in Table 8 that the interest rate on outstanding infrastructure loans after 2004 did not differ significantly across banks with varying levels of IFR ratio. This evidence, along with the higher outstanding infrastructure loans by banks with above median IFR ratio in 2004, implies a supply side explanation. We argue that banks with higher duration risk in 2004, as measured by their IFR ratios, undertook substitution of assets from long term fixed rate securities to long term fixed rate loans in order to hedge against interest rate risk.

This evidence is also supported by the event study plot in Figure 11 for the regression specification:

\[
\text{Infra Int Rate}_{id,t} = \alpha_{d,t} + \delta_{i,d} + \sum_{\tau=1999}^{2016} \beta_{\tau} \times 1 \{\text{IFR ratio}_{2004,i}\} \times 1_{t} + X_{2004,i} + \epsilon_{id,t}
\] (10)

The results we provide may be especially important in the Indian context, because they imply that banks’ exposure to infrastructure sectors over the boom period may have also been incentivised by pure market forces instead of being driven solely by government pressure, as is usually portrayed in media. This may have important policy implications for the future.

8.2. Interest Expense Beta and Infrastructure Lending

Estimation of interest expense beta, as described in Section ??, requires sufficient quarterly bank-level date on interest expense. In order to analyse relevance of interest expense sensitivity of banks for their infrastructure lending post 2004, we ideally need to estimate bank betas using data prior to 2004. However, this is problematic in the Indian context because Repo rate became the official policy rate only after 2002. In order to deal with this problem, we employ measure of Indian policy rate developed by the Bank for International Settlements which uses ‘bank rate’ for years prior to 2002, and Repo rate afterwards. Bank rate is, in essence, similar to the Repo rate and refers
the the minimum rate of interest at which the Central Bank may lend to the financial institutions (not necessarily short term as for the Repo rate). We compute interest expense beta for each bank following Equation 1, and use this sensitivity as a measure of the strength of deposit franchise of banks. Importantly, this measure is quite general and does not suffer from the same limitations as the Herfindahl-Hirschman Index in the presence of state ownership (as discussed in Section ??).

We conduct the following difference-in-differences regression analysis to identify the impact of banks’ ex-ante deposit franchise, as measured by their interest expense beta, on their lending post 2004:

$$\frac{\text{Infra}_{id,t}}{\text{Infra2002}_{id}} = \alpha_{d,t} + \delta_{i,d} + \beta \times 1\{\text{High Expense Beta}_{2004,i}\} \times 1\{\text{Post}_{2004,t}\} + X_{2004,i} + \epsilon_{id,t} \quad (11)$$

where $\frac{\text{Infra}_{id,t}}{\text{Infra2002}_{id}}$ refers to the ratio of end-of-period outstanding infrastructure loans by bank i in district d and year t relative to the ratio of end-of-period infrastructure loans by bank i in district d in year 2002. $\alpha_{d,t}$ refers to district-time fixed effects and $\delta_{i,d}$ refers to bank-district fixed effects, with the former being the crucial inclusion so as to control for demand side effects. The variable $1\{\text{High Expense Beta}_{2004,i}\}$ is an indicator variable which takes the value 1 if the interest expense beta of a bank measured using bank-level data till the end of 2004 is above the median expense beta of Indian Banks. $1\{\text{Post}_{2004,t}\}$ is an indicator variable which takes the value 1 for years after 2004. Controls $X_{2004,i}$ include size of the banks, fraction of total deposits raised in metropolitan cities, and ownership category of the banks.

We show the results for these regressions in Table 9. We find that banks with below median expense beta were characterised by higher lending to sectors associated with infrastructure in the boom period post 2004.

In Figure 12, we show the event study plot for our fixed effects regression analysis of infrastructure lending:

$$\frac{\text{Infra}_{id,t}}{\text{Infra2002}_{id}} = \alpha_{d,t} + \delta_{i,d} + \sum_{\tau=1999}^{2016} \beta_{\tau} \times 1\{\text{High Expense Beta}_{2004,i}\} \times 1_t + X_{2004,i} + \epsilon_{id,t} \quad (12)$$

These plots serve to show that the parallel trends assumption holds in the pre-period of our
study, and to show how lending to infrastructure varied by the ex-ante expense beta of the banks over the time period we consider.

In order to test whether this increase in lending to infrastructure sector by a subset of banks was not simply driven by increased demand, we employ the following regression specification:

\[\text{Infra Int Rate}_{id,t} = \alpha_{d,t} + \delta_{i,d} + \beta \times 1\{\text{High Expense Beta}_{2004,i}\} \times 1\{\text{Post}_{2004,t}\} + X_{2004,i} + \epsilon_{id,t} \] (13)

Contrary to the demand driven explanation, we find in Table 10 that the interest rate on outstanding infrastructure loans after 2004 did not differ significantly across banks with varying levels of interest expense beta. This evidence, along with the higher outstanding infrastructure loans by banks with below median expense beta, implies a supply side explanation. We argue that banks with stronger deposit franchise in 2004, as measured by their expense betas, undertook substitution of assets from long term fixed rate securities to long term fixed rate loans in order to hedge against interest rate risk.

The event study plot for the above regression is shown in Figure 13, and is obtained as follows:

\[\text{Infra Int Rate}_{id,t} = \alpha_{d,t} + \delta_{i,d} + \sum_{\tau=1999}^{2016} \beta_{\tau} \times 1\{\text{High Expense Beta}_{2004,i}\} \times 1_{\tau} + X_{2004,i} + \epsilon_{id,t} \] (14)

9. Robustness

In this section, we present an alternative regression specification as robustness tests for our results in the previous section. This specification follows the one employed in Drechsler et al. (2022), and is as follows:

\[\Delta \text{Log}(\text{Infra}_{2007-2004},id) = \alpha_d + \beta \times 1\{\text{High Var}_{2004,i}\} + X_{2004,i} + \epsilon_{id} \] (15)

where Var refers to the variable of interest: IFR ratio or the Interest Expense Beta, and \(1\{\text{High Var}_{2004,i}\}\) is an indicator variable which takes the value 1 if the bank has above median value of the variable of interest. \(\Delta \text{Log}(\text{Infra}_{2007-2004},id)\) refers to the increase in outstanding infrastructure loans by bank and district from 2004 to 2007, as measured in logs, \(\text{Log}(\text{Infra}_{2007,id}) - \text{Log}(\text{Infra}_{2004,id})\).
α_d refers to district fixed effects and is included to control for demand side effects. Controls, symbolised by $X_{2004,i}$, include size of the banks, fraction of total deposits raised in metropolitan cities, and ownership category of the banks.

The results for IFR ratio as the explanatory variable are shown in Table 11. We find that banks with above median IFR ratio in 2004 are characterised by 22 percentage point higher growth in infrastructure loans from 2004 to 2007. Similarly, the results for interest expense beta as the explanatory variable of interest are shown in Table 12. Banks with below median interest expense beta (computed using data up till 2004) show higher growth in infrastructure loans from 2004 to 2007 by a magnitude of 18 percentage points.

10. Conclusion

This paper examines the deposit franchise of banks in India and relates it to banks’ supply of long-term lending. While deposit franchise allows banks to pay deposit rates that are insensitive to market interest rates, hedging the fixed costs associated with deposit franchise requires that banks’ interest income is also insensitive to interest rates. In the first part of the analysis, we show that banks match the interest rate sensitivities of interest income to interest expense, such that return on assets is not sensitive to market interest rates, thus substantiating the findings of Drechsler et al. (2021) by providing evidence from the Indian banking sector. Our findings imply that hedging against interest rate risk in the absence of safe long term lending opportunities we have important consequences on the exposure of banks to default risk. We highlight this result by providing evidence on the influence of banks’ deposit franchise on bank credit to the risky infrastructure sector in India during this time period.

In the second part of the analysis, we hypothesize and provide evidence for two distinct deposit franchise channels in India: the deposit franchise of private sector banks comes from private sector banks’ deposit market power, whereas for state-owned banks, deposit franchise comes from the implicit government guarantees that allow them to maintain their market power. Banks’ deposit franchise necessitates that banks maintain interest rate (in)senitivity by lending long-term at fixed rates: we find that banks with higher deposit franchise lend longer-term credit to sectors usually
characterised by rigid interest rates, such as infrastructure. Banks with lower sensitivity to market interest rates also have higher non-performing loans. Using the boom period of the 2000s in India as a laboratory, we document that banks with higher deposit franchise shifted from long-term securities to long-term fixed rate loans, particularly in the infrastructure sector, whereas banks with weaker deposit franchise shifted towards sectors usually characterised by flexible rates, such as housing. Analysing the above channels during the unique credit boom episode in India, which ended with massive non-performing loans in the banking sector, allows us to provide evidence on the link between deposit franchise of banks and their lending behaviour in the presence of not only interest rate risk, but also default risk. Our paper shows that while maturity transformation allows banks to hedge against interest rate risk, the absence of safe long-term lending avenues in developing economies such as India may also lead to banks’ increasing lending to riskier sectors such as infrastructure.
References

Acharya, Viral, Abhiman Das, Nirupama Kulkarni, Prachi Mishra, and NR Prabhala, 2019, Anatomy of a banking panic.

Chari, Anusha, Lakshita Jain, and Nirupama Kulkarni, 2021, The Unholy Trinity: Regulatory Forbearance, Stressed Banks and Zombie Firms, NBER WP 28435.

Duquerroy, Anne, Adrien Matray, and Farzad Saidi, 2020, Sticky deposit rates and allocative effects of monetary policy .

Financial Express, 2019, Indian Banks have more Officers than Clerks; How the Situation Changed in just 15 years.

Gertler, Mark, and Ben Bernanke, 1989, Agency costs, net worth and business fluctuations, in Business cycle theory (Edward Elgar Publishing Ltd.).

Li, Lei, Elena Loutskina, and Philip E Strahan, 2019, Deposit market power, funding stability and long-term credit.

Sen, Pranoy, 2018, *What ails the Indian Banking Sector?*

Vishwanathan, Shri N. S., 2016, Issues in Infrastructure Financing in India, *RBI Speech at 6th National Summit organised by ASSOCHAM on ‘Infrastructure Finance - Building a New India*.

Figure 1
Time series share of long-term securities, long-term loans, and infrastructure loans in total assets

The figures below shows the time series of the share of long-term securities, long-term loans, and infrastructure loans in total assets. Panel (a) plots the time series of the average share of long-term securities in total assets from 2000 to 2020. Long-term securities refer to securities with maturity > 5 years. Panel (b) plots the time series of the average share of long-term loans in total assets. Long-term loans refer to securities with maturity > 5 years from 2000 to 2020. Panel (c) plots the time series of the average share of infrastructure loans in total assets from 2000 to 2016 (BSR data available till 2016). Infrastructure lending refers to bank loans towards construction, transport, and electricity, gas & water sectors. The data are sourced from Banking Statistical Returns (RBI) and CMIE Prowess.
Figure 2
Infrastructure Lending and Long-term Investment

The figures below show the time series of the share of long-term securities and infrastructure loans in total assets during the period of credit boom. Long-term securities refer to securities with maturity > 5 years. Infrastructure lending refers to bank loans towards construction, mining, and electricity, gas & water sectors. The data are sourced from Banking Statistical Returns (RBI) and CMIE Prowess.
Figure 3
Aggregate time series

The figure below shows the aggregate time series of central bank repo rate (CB Rate), net interest margin (NIM) and return on assets (ROA). The data are annual from CMIE Prowess, 2002 to 2020 (because Repo rate used as a monetary policy instrument since 2002). Net interest margin is calculated as the difference between interest income and interest expense divided by total assets. Return on assets is calculated as the sum of net interest margin and fee income net of operating costs and loan losses.
Figure 4
Monthly Bank Credit Time Series

The figure below shows the aggregate time series of non-food bank credit and investment. It shows the variation in their trends coincide with an exogenous shock to Indian government bond yields due to the first US Federal Fund Rate Hike since May 2000 and higher oil prices caused by Hurricane Ivan. The data are monthly from RBI DBIE, 2000 to 2008.
Figure 5
Interest income and interest expense matching

The figure below shows bin scatter plots of interest expense and interest income betas for all banks with at least 30 quarterly observations. The betas are calculated by regressing the quarterly change in each bank’s interest expense rate, interest income rate on the contemporaneous and previous three changes in the RBI Repo rate. The bin scatter plot groups banks into 20 bins by interest expense beta and plots the average income beta within each bin. The sample consists of 43 banks from 2002 to 2016 (because Repo rate used as a monetary policy instrument since 2002). The data are sourced from Banking Statistical Returns (RBI) and CMIE Prowess.

![Figure 5](image)

Figure 6
Return on assets and interest expense matching

The figure below shows bin scatter plots of interest expense and ROA betas for all banks with at least 30 quarterly observations. The interest expense betas are calculated by regressing the quarterly change in each bank’s interest expense rate, interest income rate on the contemporaneous and previous three changes in the RBI Repo rate. The bin scatter plot groups banks into 20 bins by interest expense beta and plots the average ROA beta within each bin. The sample consists of 43 banks from 2002 to 2016 (because Repo rate used as a monetary policy instrument since 2002). The data are sourced from Banking Statistical Returns (RBI) and CMIE Prowess.

![Figure 6](image)
Figure 7
Interest expense beta and ex-post non-performing loan ratio

Panel (a) shows a bin scatter plot of the average increase in infrastructure share in total lending against the interest expense betas. Panel (b) shows the bin scatter plot of ex-post NPL ratio of banks against the interest expense betas. Panel (c) shows the bin scatter plot of ex-post NPL ratio of banks against the share of infrastructure sector. Ex-post NPL ratio refers to the ratio of non-performing loans to total loans averaged over 2014, 2015 and 2016 for each bank. This is done to capture the three year period subsequent to the initiation of RBI’s Asset Quality Review. Infrastructure lending refers to loans towards construction, metals, mining, and electricity, gas & water sectors. The interest expense betas are calculated by regressing the quarterly change in each bank’s interest expense rate on the contemporaneous and previous three changes in the RBI Repo rate. The sample consists of banks with at least 30 quarterly observations from 2002 to 2016 (43 banks). Sample starts from 2002 because Repo rate used as a monetary policy instrument since then. The bin scatter plot groups banks into 20 bins by interest expense beta and plots the average ex-post NPL ratio within each bin. The data are sourced from Banking Statistical Returns (RBI) and CMIE Prowess.

(a) Interest expense beta and infra
(b) Interest expense beta and NPL
(c) Infrastructure share and NPL
Interest expense beta and deposit market concentration

The figure below shows a bin scatter plot of interest expense betas against the bank HHI. To calculate the bank HHI, we first calculate a district HHI by computing each bank’s share of the total deposits in the district and summing the squared shares. Bank-HHI is then equal to the weighted average of the district HHI, where the weights are determined by the fraction of deposits raised in each district where the bank operates. The betas are calculated by regressing the quarterly change in each bank’s interest expense rate on the contemporaneous and previous three changes in the RBI Repo rate. The sample consists of banks with at least 30 quarterly observations from 2002 to 2016 (43 banks). Sample starts from 2002 because Repo rate used as a monetary policy instrument since then. The bin scatter plot groups banks into 20 bins by bank HHI and plots the average interest expense betas within each bin. The data are sourced from Banking Statistical Returns (RBI) and CMIE Prowess.
Figure 9
Bank lending pattern and Investment Fluctuation Reserve ratio

Panel (a) shows the bin scatter plot of the change in the average ratio of each bank’s infrastructure loans from 2001-2005 to 2006-2010 against the ratio of banks’ investment fluctuation reserves to total assets in 2005. Bank’s average ratio of infrastructure loans to total loans is calculated separately for the time periods 2001-2005 and 2006-2010. The difference in the average ratio in 2006-2010 and average ratio in 2001-2005 is then used on the y-axis. Panel (b) shows the bin scatter plot of the change in the average ratio of each bank’s housing loans from 2001-2005 to 2006-2010 against the ratio of banks’ investment fluctuation reserves in 2005 to total assets in 2005. Bank’s average ratio of housing loans to total loans is calculated separately for the time periods 2001-2005 and 2006-2010. The difference in the average ratio in 2006-2010 and average ratio in 2001-2005 is then used on the y-axis. Infrastructure lending refers to bank loans towards sectors associated with infrastructure including construction, metals, mining and electricity, gas & water. Housing lending refers to loans classified under ‘Personal - Loans for Housing’ category in BSR. We use the ratio of investment fluctuation reserve to total assets as a proxy for deposit franchise. The bin scatter plot groups banks into 20 bins by IFR to total assets ratio in 2005 and plots the average of each bin’s change in Infra to total loans from 2001-2005 to 2006-2010 within each bin. Results remain robust for variations in the pre- or post-period. The data are sourced from Banking Statistical Returns (RBI) and CMIE Prowess.

(a) IFR ratio in 2005 and Infra lending
(b) IFR ratio in 2005 and Housing lending
Figure 10
Investment Fluctuation Reserve in 2004 and Outstanding Infrastructure Loans

The figure below shows the event study estimates obtained from a fixed effects panel regressions to assess the relevance of ex-ante investment fluctuation reserves in 2004 for infrastructure lending as described in equation 8. The dependent variable is the ratio of outstanding bank-district level infrastructure loans in a given year relative to the infrastructure loans in 2002. Infrastructure loans refer to bank loans towards construction, mining, and electricity, gas & water sectors. 1_t is an indicator variable which takes the value 1 for year t, and 0 otherwise. Exposure measure $1 \{ \text{IFR ratio}_{2004,i} \}$ takes the value 1 for banks with above median share of investment fluctuation reserves to total assets in 2004, and 0 otherwise. $X_{2004,i}$ refers to bank level controls interacted with the year dummy variable. Controls include the following bank level variables: total assets in 2004, share of metropolitan deposits to total deposits in 2004, and indicator variable for state or private ownership. Bank-district and district-year fixed effects are included as indicated. The data are annual and cover 31 Indian commercial banks from 1999 to 2016 in an unbalanced panel. Standard errors are double-clustered at the district and year level.

$$\frac{\text{Infra}_{id,t}}{\text{Infra}_{2002, id}} = \alpha_{d,t} + \delta_{i,d} + \sum_{\tau=1999}^{2016} \beta_{\tau} \times 1 \{ \text{IFR ratio}_{2004,i} \} \times 1_t + X_{2004,i} + \epsilon_{id,t}$$
Figure 11
Investment Fluctuation Reserve in 2004 and Interest Rate on Outstanding Infrastructure Loans

The figure below shows the event study estimates obtained from a fixed effects panel regressions to assess the relevance of ex-ante investment fluctuation reserves in 2004 for interest rate on outstanding infrastructure loans as described in equation 10. The dependent variable $\text{Infra Int Rate}_{d,t}$ is the interest rate on outstanding infrastructure loans. Infrastructure loans refer to bank loans towards construction, mining, and electricity, gas & water sectors. 1_t is an indicator variable which takes the value 1 for year t, and 0 otherwise. Exposure measure $\{\text{IFR ratio}_{2004,i}\}$ takes the value 1 for banks with above median share of investment fluctuation reserves to total assets in 2004, and 0 otherwise. $X_{2004,i}$ refers to bank level controls interacted with the year dummy variable. Controls include the following bank level variables: total assets in 2004, share of metropolitan deposits to total deposits in 2004, and indicator variable for state or private ownership. Bank-district and district-year fixed effects are included as indicated. The data are annual and cover 31 Indian commercial banks from 1999 to 2016 in an unbalanced panel. Standard errors are double-clustered at the district and year level.

$$\text{Infra Int Rate}_{d,t} = \alpha_{d,t} + \delta_{i,d} + \sum_{\tau=1999}^{2016} \beta_{\tau} \times \{\text{IFR ratio}_{2004,i}\} \times 1_t + X_{2004,i} + \epsilon_{d,t}$$
Figure 12
Interest Expense Beta in 2004 and Outstanding Infrastructure Loans

The figure below shows the event study estimates obtained from a fixed effects panel regressions to assess the relevance of ex-ante interest expense sensitivity of banks for infrastructure lending as described in equation 12. The dependent variable is the ratio of outstanding bank-district level infrastructure loans in a given year relative to the infrastructure loans in 2002. Infrastructure loans refer to bank loans towards construction, mining, and electricity, gas & water sectors. 1_t is an indicator variable which takes the value 1 for year t, and 0 otherwise. Exposure measure $\mathbb{1}\{\text{Expense Beta}_{2004,i}\}$ takes the value 1 for banks with above median interest expense beta, and 0 otherwise. $X_{2004,i}$ refers to bank level controls interacted with the year dummy variable. Controls include the following bank level variables: total assets in 2004, share of metropolitan deposits to total deposits in 2004, and indicator variable for state or private ownership. Bank-district and district-year fixed effects are included as indicated. The data are annual and cover 28 Indian commercial banks from 1999 to 2016 in an unbalanced panel. Standard errors are double-clustered at the district and year level.

\[
\frac{\text{Infra}_{d,t}}{\text{Infra}_{2002,i}} = \alpha_d + \delta_i + \sum_{\tau=1999}^{2016} \beta_\tau \times \mathbb{1}\{\text{Expense Beta}_{2004,i}\} \times 1_t + X_{2004,i} + \epsilon_{d,t}
\]
Figure 13
Interest Expense Beta and Interest Rate on Outstanding Infrastructure Loans

The figure below shows the event study estimates obtained from a fixed effects panel regressions to assess the relevance of ex-ante interest expense sensitivity of banks for infrastructure lending as described in equation 14. The dependent variable \(\text{Infra Int Rate}_{id,t} \) is the interest rate on outstanding infrastructure loans. Infrastructure loans refer to bank loans towards construction, mining, and electricity, gas & water sectors. \(1_t \) is an indicator variable which takes the value 1 for year \(t \), and 0 otherwise. Exposure measure \(1\{\text{Expense Beta}_{2004},i\} \) takes the value 1 for banks with above median interest expense beta, and 0 otherwise. \(X_{2004,i} \) refers to bank level controls interacted with the year dummy variable. Controls include the following bank level variables: total assets in 2004, share of metropolitan deposits to total deposits in 2004, and indicator variable for state or private ownership. Bank-district and district-year fixed effects are included as indicated. The data are annual and cover 28 Indian commercial banks from 1999 to 2016 in an unbalanced panel. Standard errors are double-clustered at the district and year level.

\[
\text{Infra Int Rate}_{id,t} = \alpha_{d,t} + \delta_{i,d} + \sum_{\tau=1999}^{2016} \beta_{\tau} \times 1\{\text{Expense Beta}_{2004,i}\} \times 1_t + X_{2004,i} + \epsilon_{id,t}
\]
Table 1
Summary Statistics

The table below provides summary statistics on bank characteristics. It displays the sample mean coupled with standard deviation (in parenthesis) for each variable. The sample consists of Indian commercial banks with at least 30 quarterly observations from 2002 to 2016 (43 banks). Interest expense betas are calculated by regressing the change in a bank’s interest expense rate on the contemporaneous and three previous quarterly changes in the RBI repo rate and summing up the coefficients (see equation (1)). Interest income betas are calculated analogously. Column (1), (2) and (3) report the results for all banks, public sector banks and private sector banks respectively. TFE refers to time fixed effects.

<table>
<thead>
<tr>
<th></th>
<th>(1) All banks</th>
<th>(2) Public Sector Banks</th>
<th>(3) Private Sector Banks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expense Beta (TFE)</td>
<td>0.5679 (0.178)</td>
<td>0.5317 (0.157)</td>
<td>0.6135 (0.206)</td>
</tr>
<tr>
<td>Income Beta (TFE)</td>
<td>0.5587 (0.180)</td>
<td>0.5414 (0.142)</td>
<td>0.6058 (0.238)</td>
</tr>
<tr>
<td>ROA Beta (TFE)</td>
<td>0.1337 (0.197)</td>
<td>0.1279 (0.153)</td>
<td>0.1547 (0.278)</td>
</tr>
<tr>
<td>Expense Beta (No TFE)</td>
<td>0.5757 (0.206)</td>
<td>0.5391 (0.217)</td>
<td>0.6197 (0.176)</td>
</tr>
<tr>
<td>Income Beta (No TFE)</td>
<td>0.5650 (0.210)</td>
<td>0.5467 (0.208)</td>
<td>0.6123 (0.217)</td>
</tr>
<tr>
<td>ROA Beta (No TFE)</td>
<td>0.1388 (0.205)</td>
<td>0.1348 (0.171)</td>
<td>0.1602 (0.275)</td>
</tr>
<tr>
<td>Asset repricing maturity</td>
<td>3.1946 (0.480)</td>
<td>3.4157 (0.317)</td>
<td>2.8767 (0.492)</td>
</tr>
<tr>
<td>Liability repricing maturity</td>
<td>2.1186 (0.884)</td>
<td>2.3926 (0.949)</td>
<td>1.7385 (0.568)</td>
</tr>
<tr>
<td>Log avg. assets</td>
<td>13.5554 (1.091)</td>
<td>13.9621 (0.795)</td>
<td>12.8948 (1.280)</td>
</tr>
<tr>
<td>Loan/Assets</td>
<td>0.6545 (0.0360)</td>
<td>0.6588 (0.0271)</td>
<td>0.6450 (0.0501)</td>
</tr>
<tr>
<td>Securities/Assets</td>
<td>0.3455 (0.0360)</td>
<td>0.3412 (0.0271)</td>
<td>0.3550 (0.0501)</td>
</tr>
<tr>
<td>Deposits/Assets</td>
<td>0.9432 (0.0857)</td>
<td>0.9584 (0.0563)</td>
<td>0.9197 (0.125)</td>
</tr>
<tr>
<td>IFR ratio 2005</td>
<td>0.0288 (0.115)</td>
<td>0.0117 (0.00383)</td>
<td>0.0082 (0.00309)</td>
</tr>
<tr>
<td>Long-term investment ratio 2005</td>
<td>0.2294 (0.0986)</td>
<td>0.2617 (0.0719)</td>
<td>0.1774 (0.123)</td>
</tr>
<tr>
<td>Observations</td>
<td>43</td>
<td>28</td>
<td>15</td>
</tr>
</tbody>
</table>
Table 2
Interest sensitivity matching: Panel estimation

The table below provides estimates of the matching of interest income and interest expense sensitivities to changes in the RBI Repo rate for equation 2. The dependent variable in the second stage regression is the change in the interest income rate (interest income divided by assets) from quarter t-1 to t and $\Delta \text{IntExp}_{i,t}$ is the change in the interest expense rate of bank i from t-1 to t. $\hat{\Delta \text{IntExp}}_{i,t}$ is the predicted value of change in interest expense rate from the first stage regression. $\Delta \text{Repo Rate}$ is the change in the RBI Repo rate from one quarter to the next. Bank and quarter fixed effects are included as indicated. The data are quarterly and cover 48 Indian commercial banks from 2002 to 2016 (because Repo rate used as a monetary policy instrument since 2002). In subsequent results for the main analysis, 5 banks are thrown out due to missing values of investment fluctuation reserves. These results remain robust to using the sample of 43 banks as well. Standard errors are block-bootstrapped by quarter with 1,000 iterations.

First stage: $\Delta \text{IntExp}_{i,t} = \alpha_i + \delta_t + \sum_{\tau=0}^{3} \beta_{i,\tau} \Delta \text{Repo Rate}_{t-\tau} + \epsilon_{i,t}$

Second stage: $\Delta \text{IntInc}_{i,t} = \lambda_i + \theta_t + \delta \Delta \hat{\text{IntExp}}_{i,t} + \epsilon_{i,t}$

<table>
<thead>
<tr>
<th></th>
<th>All banks (1)</th>
<th>Public Sector Banks (2)</th>
<th>Private Sector Banks (3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \hat{\text{IntExp}}$</td>
<td>0.996***</td>
<td>0.902***</td>
<td>1.132**</td>
<td>0.964**</td>
<td>0.861***</td>
<td>0.825***</td>
</tr>
<tr>
<td></td>
<td>(0.122)</td>
<td>(0.075)</td>
<td>(0.235)</td>
<td>(0.102)</td>
<td>(0.113)</td>
<td>(0.071)</td>
</tr>
<tr>
<td>Bank FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>2,053</td>
<td>2,053</td>
<td>1,330</td>
<td>1,330</td>
<td>723</td>
<td>723</td>
</tr>
<tr>
<td>No. of banks</td>
<td>48</td>
<td>48</td>
<td>30</td>
<td>30</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>R^2</td>
<td>0.130</td>
<td>0.563</td>
<td>0.149</td>
<td>0.619</td>
<td>0.116</td>
<td>0.574</td>
</tr>
</tbody>
</table>
Table 3
Interest expense and ROA matching: Panel estimation

The table below provides estimates of the matching of return of assets and interest expense sensitivities to changes in the RBI Repo rate for equation 3. The dependent variable in the second stage regression is the change in the return on assets from quarter t-1 to t and $\Delta \text{IntExp}_{i,t}$ is the change in the interest expense rate of bank i from t-1 to t. $\hat{\text{IntExp}}_{i,t}$ is the predicted value of change in interest expense rate from the first stage regression. $\Delta \text{Repo Rate}$ is the change in the RBI Repo rate from one quarter to the next. Bank and quarter fixed effects are included as indicated. The data are quarterly and cover 48 Indian commercial banks from 2002 to 2016 (because Repo rate used as a monetary policy instrument since 2002). In subsequent results for the main analysis, 5 banks are thrown out due to missing values of investment fluctuation reserves. These results remain robust to using the sample of 43 banks as well. Standard errors are block-bootstrapped by quarter with 1,000 iterations.

First stage: $\Delta \text{IntExp}_{i,t} = \alpha_i + \delta_t + \sum_{\tau=0}^{3} \beta_{i,\tau} \Delta \text{RepoRate}_{t-\tau} + \epsilon_{i,t}$

Second stage: $\Delta \text{ROA}_{i,t} = \lambda_i + \theta_t + \delta \hat{\text{IntExp}}_{i,t} + \epsilon_{i,t}$

<table>
<thead>
<tr>
<th></th>
<th>All banks</th>
<th>Public Sector Banks</th>
<th>Private Sector Banks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>ΔIntExp</td>
<td>-0.468</td>
<td>-0.428</td>
<td>-0.087</td>
</tr>
<tr>
<td></td>
<td>(0.596)</td>
<td>(0.530)</td>
<td>(0.170)</td>
</tr>
<tr>
<td>$\sum \gamma_{\tau}$</td>
<td>0.404</td>
<td>0.191*</td>
<td>0.555</td>
</tr>
<tr>
<td></td>
<td>(0.338)</td>
<td>(0.106)</td>
<td>(0.665)</td>
</tr>
<tr>
<td>Bank FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>2,052</td>
<td>2,052</td>
<td>1,330</td>
</tr>
<tr>
<td>No. of banks</td>
<td>48</td>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td>R^2</td>
<td>0.028</td>
<td>0.087</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.033</td>
</tr>
</tbody>
</table>
Table 4
State-ownership and interest sensitivity matching

The table below provides estimates of the relation between state-ownership of banks and interest expense rate sensitivity to changes in the RBI Repo rate using a panel estimation procedure for equation 4. The dependent variables for column 1 and 2 is the change in interest expenses and for columns 3 and 4 is change in interest income rate. \(1\{PSB_i\}\) is an indicator variable which takes the value 1 for public sector banks and 0 for private sector or foreign banks. Column 1 presents the first-stage results with contemporaneous and three lagged values of \(\Delta Repo Rate\) interacted with the PSB dummy as the explanatory variable and column 2 presents the second-stage results with predicted value of \(\Delta Interest Expenses\) from the first stage as the explanatory variable. \(\Delta Repo Rate\) is the change in the RBI Repo rate from one quarter to the next. Bank and quarter fixed effects are included as indicated. The data are quarterly and cover 48 Indian commercial banks from 2002 to 2016 (because Repo rate used as a monetary policy instrument since 2002). In subsequent results for the main analysis, 5 banks are thrown out due to missing values of investment fluctuation reserves. These results remain robust to using the sample of 43 banks as well. Standard errors are block-bootstrapped by quarter with 1,000 iterations.

First stage: \(\Delta IntExp_{i,t} = \alpha_i + \delta_t + \sum_{\tau=0}^{3} \left(\beta^0_{\tau,psb} + \beta^1_{\tau,psb} \cdot 1\{PSB_i\} \right) \Delta RepoRate_{t-\tau} + \epsilon_{i,t}\)

Second stage: \(\Delta IntInc_{i,t} = \lambda_i + \theta_t + \delta \Delta \hat{IntExp}_{i,t} + \epsilon_{i,t}\)

<table>
<thead>
<tr>
<th></th>
<th>First stage</th>
<th></th>
<th>Second stage</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>(\beta^1_{\tau,psb})</td>
<td>-0.111***</td>
<td>-0.094*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.054)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta IntExp)</td>
<td></td>
<td></td>
<td>1.131***</td>
<td>1.083**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.378)</td>
<td>(0.465)</td>
</tr>
<tr>
<td>Bank FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Obs.</td>
<td>2,053</td>
<td>2,053</td>
<td>2,053</td>
<td>2,053</td>
</tr>
<tr>
<td>No. of banks</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.152</td>
<td>0.512</td>
<td>0.095</td>
<td>0.536</td>
</tr>
</tbody>
</table>
The table below provides estimates of the relation between banks’ deposit market concentration and interest expense sensitivity to changes in the RBI Repo rate equation 5. The dependent variable is the change in the interest expense rate of bank i from quarter $t-1$ to t. This variable is regressed against contemporaneous and three lagged values of ΔRepo Rate interacted with the bank’s deposit market concentration (bank-HHI) in 2005 (pre-event year in the subsequent analysis) as the explanatory variable. Columns (1) and (2) provide results for the sample with all banks, whereas columns (3) and (4), and (5) and (6) provide separate results for the sub-sample with public sector banks and private sector banks. To calculate the bank HHI, we first calculate district level HHI by computing each bank’s share of the total deposits in the district and summing the squared shares. Bank-HHI is then equal to the weighted average of the district HHI, where the weights are determined by the fraction of deposits raised in each district where the bank operates. The variable $1\{High \ HHI_{2005,t}\}$ takes the value 1 for above median bank HHI in 2005 and 0 otherwise. Bank and quarter fixed effects are included as indicated. The data are quarterly from 2002 to 2016 (because Repo rate used as a monetary policy instrument since 2002). Standard errors are block-bootstrapped by quarter with 1,000 iterations. The sample consists of 43 Indian commercial banks. In order to ensure the comparability of all results analysing potential determinants of deposit franchise, 5 banks are thrown out due to missing values of investment fluctuation reserves in all subsequent results.

$$
\Delta \text{IntExp}_{i,t} = \alpha_i + \beta_t + \sum_{r=0}^{3} \left(\beta_{0_HHI} + \beta_{1_HHI} \times 1 \{High \ HHI_{2005,t}\} \right) \Delta \text{RepoRate}_{t-r} + \epsilon_{i,t}
$$

<table>
<thead>
<tr>
<th></th>
<th>All banks</th>
<th>Public Sector Banks</th>
<th>Private Sector Banks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>β_{1_HHI}</td>
<td>-0.098***</td>
<td>-0.096**</td>
<td>-0.045</td>
</tr>
<tr>
<td></td>
<td>(0.031)</td>
<td>(0.043)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>Bank FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Obs.</td>
<td>1,871</td>
<td>1,871</td>
<td>1,251</td>
</tr>
<tr>
<td>No. of banks</td>
<td>43</td>
<td>43</td>
<td>28</td>
</tr>
<tr>
<td>R^2</td>
<td>0.156</td>
<td>0.511</td>
<td>0.155</td>
</tr>
</tbody>
</table>

Table 5
Deposit market concentration in 2005 and interest sensitivity matching
Table 6
IFR ratio in 2005 and interest rate sensitivity

The table below provides estimates of the relation between banks’ investment fluctuation reserves and interest expense sensitivity to changes in the RBI Repo rate for equation 6. The dependent variable is the change in the interest expense rate of bank i from quarter t-1 to t. This variable is regressed against contemporaneous and three lagged values of ΔRepo Rate interacted with with an indicator variable for above median bank’s investment fluctuation reserve (IFR) in 2005 (pre-event year in the subsequent analysis) as the explanatory variable. Columns (1) and (2) provide results for the sample with all banks, whereas columns (3) and (4), and (5) and (6) provide separate results for the sub-sample with public sector banks and private sector banks. We compute IFR rate as the ratio of investment fluctuation reserves to total assets in 2005. We derive the median bank investment fluctuation rates by ownership in 2005. The variable \(1\{High\ IFR_{2005,t}\}\) takes the value 1 for above median investment fluctuation reserve ratio in 2005 and 0 otherwise. Bank and quarter fixed effects are included as indicated. The data are quarterly from 2002 to 2016 (because Repo rate used as a monetary policy instrument since 2002). Standard errors are block-bootstrapped by quarter with 1,000 iterations. The sample consists of 43 Indian commercial banks. 5 banks are thrown out due to missing values of investment fluctuation reserves. In order to ensure the comparability of all results analysing potential determinants of deposit franchise, 5 banks are thrown out due to missing values of investment fluctuation reserves.

\[
\Delta \text{IntExp}_{i,t} = \alpha_i + \delta_t + \sum_{\tau=0}^{3} \left(\beta^0_{\tau IFR} + \beta^1_{\tau IFR} \times 1\{High\ IFR_{2005,t}\} \right) \Delta \text{RepoRate}_{t-\tau} + \epsilon_{i,t}
\]

<table>
<thead>
<tr>
<th></th>
<th>All banks</th>
<th>Public Sector Banks</th>
<th>Private Sector Banks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sum \beta_{\tau IFR})</td>
<td>(1) -0.086*** (0.022)</td>
<td>(2) -0.070** (0.033)</td>
<td>(3) -0.063*** (0.012)</td>
</tr>
<tr>
<td>Bank FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time FE</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Obs.</td>
<td>1,871</td>
<td>1,871</td>
<td>1,251</td>
</tr>
<tr>
<td>No. of banks</td>
<td>43</td>
<td>43</td>
<td>28</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.154</td>
<td>0.509</td>
<td>0.156</td>
</tr>
</tbody>
</table>

49
Table 7
Investment Fluctuation Reserve in 2004 and Outstanding Infrastructure Loans

The table below provides estimates of a difference-in-differences regression to assess the relevance of ex-ante investment fluctuation reserves in 2004 for infrastructure lending as described in equation 7. The dependent variable is the ratio of outstanding bank-district level infrastructure loans in a given year relative to the infrastructure loans in 2002. Infrastructure loans refer to bank loans towards construction, mining, and electricity, gas & water sectors. \(\mathbb{1}\{\text{Post}_{2004},t\} \) is an indicator variable which takes the value 1 for years post 2004, and 0 otherwise. Exposure measure takes the value 1 for banks with above median share of investment fluctuation reserves to total assets in 2004, and 0 otherwise. \(X_{2004,i} \) refers to bank level controls interacted with the post period dummy variable. Controls include the following bank level variables: total assets in 2004, share of metropolitan deposits to total deposits in 2004, and indicator variable for state or private ownership. Bank-district and district-year fixed effects are included as indicated. The data are annual and cover 31 Indian commercial banks from 1999 to 2016 in an unbalanced panel. Standard errors are double-clustered at the district and year level.

\[
\frac{\text{Infra}_{d,t}}{\text{Infra2002}_{d}} = \alpha_{d,t} + \delta_{i,d} + \beta \times \mathbb{1}\{\text{High IFR ratio}_{2004,i}\} \times \mathbb{1}\{\text{Post}_{2004},t\} + X_{2004,i} + \epsilon_{id,t}
\]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post(_{2004} = 1)</td>
<td>86.759;++</td>
<td>(23.435)</td>
<td></td>
</tr>
<tr>
<td>High IFR Ratio(_{2004} = 1)</td>
<td>10.323;++</td>
<td>(4.851)</td>
<td></td>
</tr>
<tr>
<td>Post({2004} = 1 \times \text{High IFR Ratio}{2004} = 1)</td>
<td>39.206;*</td>
<td>66.498;++</td>
<td>69.668;++</td>
</tr>
<tr>
<td>(22.534)</td>
<td>(28.963)</td>
<td>(31.441)</td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Bank-District FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>District-Year FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>50510</td>
<td>50510</td>
<td>50510</td>
</tr>
<tr>
<td>No. of districts</td>
<td>416</td>
<td>416</td>
<td>416</td>
</tr>
<tr>
<td>No. of banks</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>R(^2)</td>
<td>0.005</td>
<td>0.572</td>
<td>0.572</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
* \(p < 0.1 \), ** \(p < 0.05 \), *** \(p < 0.01 \)
Table 8
Investment Fluctuation Reserve in 2004 and Interest Rate on Outstanding Infrastructure Loans

The table below provides estimates of a difference-in-differences regression to assess the relevance of ex-ante investment fluctuation reserves in 2004 for interest rate on infrastructure lending as described in equation 9. The dependent variable is the interest rate charged on infrastructure loans in a given year. Infrastructure loans refer to bank loans towards construction, mining, and electricity, gas & water sectors. 1{Post2004,t} is an indicator variable which takes the value 1 for years post 2004, and 0 otherwise. Exposure measure takes the value 1 for banks with above median share of investment fluctuation reserves to total assets in 2004, and 0 otherwise. X_{2004,i} refers to bank level controls interacted with the post period dummy variable. Controls include the following bank level variables: total assets in 2004, share of metropolitan deposits to total deposits in 2004, and indicator variable for state or private ownership. Bank-state and state-year fixed effects are included as indicated. The data are annual and cover 31 Indian commercial banks from 1999 to 2016 in an unbalanced panel. Standard errors are double-clustered at the state and year level.

\[
\text{Infra Int Rate}_{id,t} = \alpha_{d,t} + \delta_{i,d} + \beta \times 1\{\text{High IFR ratio}_{2004,i}\} \times 1\{\text{Post}_{2004,t}\} + X_{2004,i} + \epsilon_{id,t}
\]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post_2004 = 1</td>
<td>-3.588***</td>
<td>(0.670)</td>
<td></td>
</tr>
<tr>
<td>High IFR Ratio_2004 = 1</td>
<td>-0.821***</td>
<td>(0.269)</td>
<td></td>
</tr>
<tr>
<td>Post_2004 = 1 \times High IFR Ratio_2004 = 1</td>
<td>0.649</td>
<td>0.484</td>
<td>0.309</td>
</tr>
<tr>
<td></td>
<td>(0.455)</td>
<td>(0.676)</td>
<td>(0.599)</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Bank-State FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>State-Year FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>6257</td>
<td>6257</td>
<td>6257</td>
</tr>
<tr>
<td>No. of States</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>No. of banks</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>R^2</td>
<td>0.018</td>
<td>0.327</td>
<td>0.329</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
Interest Expense Beta and Outstanding Infrastructure Loans

The table below provides estimates of a difference-in-differences regression to assess the relevance of ex-ante interest expense sensitivity for infrastructure lending as described in equation 11. The dependent variable is the ratio of outstanding bank-district level infrastructure loans in a given year relative to the infrastructure loans in 2002. Infrastructure loans refer to bank loans towards construction, mining, and electricity, gas & water sectors. \(1\{Post_{2004,t}\}\) is an indicator variable which takes the value 1 for years post 2004, and 0 otherwise. Exposure measure takes the value 1 for banks with above median interest expense beta, and 0 otherwise. X\(_{2004,i}\) refers to bank level controls interacted with the post period dummy variable. Controls include the following bank level variables: total assets in 2004, share of metropolitan deposits to total deposits in 2004, and indicator variable for state or private ownership. Bank-district and district-year fixed effects are included as indicated. The data are annual and cover 28 Indian commercial banks from 1999 to 2016 in an unbalanced panel. Standard errors are double-clustered at the district and year level.

\[
\frac{\text{Infra}_{i,t}}{\text{Infra}_{2002,i}} = \alpha_{d,t} + \delta_{i,d} + \beta \times \mathbb{1}\{\text{High Expense Beta}_{2004,i}\} \times \mathbb{1}\{Post_{2004,t}\} + X_{2004,i} + \epsilon_{i,t}
\]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post(_{2004} = 1)</td>
<td>119.251***</td>
<td>(27.913)</td>
<td></td>
</tr>
<tr>
<td>High Expense Beta(_{2004} = 1)</td>
<td>-3.629 (2.817)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post({2004} = 1 \times) High Expense Beta({2004} = 1)</td>
<td>-60.354** (22.990)</td>
<td>-62.634** (25.185)</td>
<td>-61.506** (25.807)</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Bank-District FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>District-Year FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>35584</td>
<td>35584</td>
<td>35584</td>
</tr>
<tr>
<td>No. of districts</td>
<td>373</td>
<td>373</td>
<td>373</td>
</tr>
<tr>
<td>No. of banks</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.006</td>
<td>0.542</td>
<td>0.542</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
* \(p < 0.1\), ** \(p < 0.05\), *** \(p < 0.01\)
Table 10
Interest Expense Beta and Interest Rate on Outstanding Infrastructure Loans

The table below provides estimates of a difference-in-differences regression to assess the relevance of ex-ante interest expense sensitivity for interest rate on infrastructure lending as described in equation 13. The dependent variable is the interest rate charged on infrastructure loans in a given year. Infrastructure loans refer to bank loans towards construction, mining, and electricity, gas & water sectors. $\mathbb{I}\{\text{Post}_{2004},t\}$ is an indicator variable which takes the value 1 for years post 2004, and 0 otherwise. Exposure measure takes the value 1 for banks with above median interest expense beta, and 0 otherwise. X_{2004} refers to bank level controls interacted with the post period dummy variable. Controls include the following bank level variables: total assets in 2004, share of metropolitan deposits to total deposits in 2004, and indicator variable for state or private ownership. Bank-state and state-year fixed effects are included as indicated. The data are annual and cover 28 Indian commercial banks from 1999 to 2016 in an unbalanced panel. Standard errors are double-clustered at the state and year level.

$$\text{Infra Int Rate}_{d,t} = \alpha_{d,t} + \delta_i + \beta \times \mathbb{I}\{\text{High Expense Beta}_{2004},i\} \times \mathbb{I}\{\text{Post}_{2004},t\} + X_{2004},i + \epsilon_{id,t}$$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post$_{2004} = 1$</td>
<td>-3.504***</td>
<td>(1.083)</td>
<td></td>
</tr>
<tr>
<td>High Expense Beta$_{2004} = 1$</td>
<td>0.603</td>
<td>(1.536)</td>
<td></td>
</tr>
<tr>
<td>Post${2004} = 1 \times$ High Expense Beta${2004} = 1$</td>
<td>-1.029</td>
<td>-1.313</td>
<td>-0.916</td>
</tr>
<tr>
<td></td>
<td>(1.490)</td>
<td>(1.883)</td>
<td>(1.730)</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Bank-State FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>State-Year FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>_cons</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Observations</td>
<td>4384</td>
<td>4384</td>
<td>4384</td>
</tr>
<tr>
<td>No. of States</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>No. of banks</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>R^2</td>
<td>0.022</td>
<td>0.354</td>
<td>0.355</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

* $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$
Table 11
Interest sensitivity matching: Panel estimation

The table below provides estimates of a difference-in-differences regression to assess the relevance of ex-ante investment fluctuation reserves in 2004 for infrastructure lending as described in equation 15. The dependent variable is the change in the log of outstanding infrastructure credit in 2007 relative to the log of outstanding infrastructure credit in 2004. Infrastructure loans refer to bank loans towards construction, mining, and electricity, gas & water sectors. \(\mathbb{1}\{\text{Post}_{2004,i}\} \) is an indicator variable which takes the value 1 for years post 2004, and 0 otherwise. Exposure measure takes the value 1 for banks with above median share of investment fluctuation reserves to total assets in 2004, and 0 otherwise. \(X_{2004,i} \) refers to bank level controls interacted with the post period dummy variable. Controls include the following bank level variables: total assets in 2004, share of metropolitan deposits to total deposits in 2004, and indicator variable for state or private ownership. District fixed effects are included as indicated. The data are annual and cover 30 Indian commercial banks from 1999 to 2016 in an unbalanced panel. Standard errors are clustered at the district level.

\[
\Delta \log(\text{Infra}_{2007-2004},id) = \alpha_d + \beta \times \mathbb{1}\{\text{High IFR ratio}_{2004,i}\} + \epsilon_{id}
\]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>High IFR ratio</td>
<td>0.141**</td>
<td>0.222***</td>
<td>0.218***</td>
</tr>
<tr>
<td>2004</td>
<td>(0.067)</td>
<td>(0.071)</td>
<td>(0.073)</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>District FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>2765</td>
<td>2765</td>
<td>2765</td>
</tr>
<tr>
<td>No. of districts</td>
<td>418</td>
<td>418</td>
<td>418</td>
</tr>
<tr>
<td>No. of banks</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.002</td>
<td>0.155</td>
<td>0.169</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

* \(p < 0.1 \), ** \(p < 0.05 \), *** \(p < 0.01 \)
Table 12
Interest sensitivity matching: Panel estimation

The table below provides estimates of a difference-in-differences regression to assess the relevance of ex-ante investment fluctuation reserves in 2004 for infrastructure lending as described in equation 15. The dependent variable is the change in the log of outstanding infrastructure credit in 2007 relative to the log of outstanding infrastructure credit in 2004. Infrastructure loans refer to bank loans towards construction, mining, and electricity, gas & water sectors. \(1\{\text{Post}_{2004,t}\}\) is an indicator variable which takes the value 1 for years post 2004, and 0 otherwise. Exposure measure takes the value 1 for banks with above median interest expense beta, and 0 otherwise. \(X_{2004,i}\) refers to bank level controls interacted with the post period dummy variable. Controls include the following bank level variables: total assets in 2004, share of metropolitan deposits to total deposits in 2004, and indicator variable for state or private ownership. District fixed effects are included as indicated. The data are annual and cover 26 Indian commercial banks from 1999 to 2016 in an unbalanced panel. Standard errors are clustered at the district level.

\[
\Delta \log(\text{Infra}_{2007-2004, id}) = \alpha_d + \beta \times 1\{\text{High Expense Beta}_{2004,i}\} + \epsilon_{id}
\]

<table>
<thead>
<tr>
<th>High Expense Beta_{2004}</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.259***</td>
<td>-0.218**</td>
<td>-0.179**</td>
</tr>
<tr>
<td></td>
<td>(0.086)</td>
<td>(0.090)</td>
<td>(0.091)</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>District FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>1903</td>
<td>1903</td>
<td>1903</td>
</tr>
<tr>
<td>No. of districts</td>
<td>378</td>
<td>378</td>
<td>378</td>
</tr>
<tr>
<td>No. of banks</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.005</td>
<td>0.204</td>
<td>0.215</td>
</tr>
</tbody>
</table>

Standard errors in parentheses

* \(p < 0.1\), ** \(p < 0.05\), *** \(p < 0.01\)
Online Appendix
Figure A1
US Monetary Policy Shocks and Bank Credit in India

(a) Log(Loans)
(b) Log(Investment)
(c) Log(Industry Loans)
(d) Log(Services Loans)
(e) Log(Personal Loans)